1959

for curve B. A comparison of the data of
Figs. 3 and 4 reveals the improvement in
average power handling capacity obtained
by using a high Curie temperature tip of
ferrite positioned on the load end. The trend
of decreasing isolation loss at the low end of
the band as the effective power is raised is
markedly reduced in Fig. 4, where, for the
composite ferrite isolator, isolation loss at
2.9 kmc is greater than 15 db {or an effective
average input power of 3200 watts. Without
the high Curie temperature ferrite the isola-
tor of Fig. 3 displays a reverse loss of <13 db
at 2.9 kmc for an effective average input of
only 1500 watts.
E. N. SkomaL
Sylvania Microwave Phys. Lab.
Mountain View, Calif.

Reflection Coefficient of E-Plane
Tapered Waveguides*

In a paper by Matsumaruy,! formulas of
the input reflection coefficients of the line-
arly and sinusoidally E-plane tapered wave-
guides are given. Excellent agreements be-
tween the theoretical and experimental re-
sults have been found in both cases. In this
note we wish to add some analytical re-
marks.

The analysis given in the above paper is
different from the rigorous one given by
Walker and Wax.? The latter led to a non-
linear differential equation

dR 1—-R2 4

- 2vR -+ TR In{Z&)] =0 (1)
where R is the reflection coefficient, Z(x) is
the surge impedance of the tapered line, and
v=a-+jB is the wave propagation constant.
If the tapered line is loss-free, then we have
vy=7jB8. On the assumption that the phase
constant, 8 is independent of x, and that

R:1, Bolinder® obtained an approximate °

expression of the input reflection coefficient

R*zf

for a finite tapered line of length I, termi-
nated by Z(0) =Z,and Z() =Z, at each end.
It may be shown that Mr. Matsumaru’s
equations (4) and (12) are equivalent to (2)
in this communication. On substitution of
the surge impedance of a sinusoidal taper

7 + A VARSI A (Wx> (3)

Il Z@ ] e?ede (2)

l

into our (2), we obtain his (12). Substituting
the surge impedance of a linear taper

Z(x) = Zy+ (Lo — Z0)a/l )

Z(x) =

e — e 008

2

* Received by the PGMTT, June 30, 1958.
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Correspondence

into our (2), and letting x=y<41/2, we ob-
tain his (4), with its independent variable %
being replaced by y. Therefore, it appears
that Bolindet's assumption of R?<1 should
also apply to Mr. Matsumaru’s analytical
results. This is not, however, stated explicitly
in his paper.

For a linearly tapered line defined by (4),
(2) may be integrated exactly in terms of Ci
and 84, the cosine and sine integrals. The in-
put reflection coefficient is

R = %efuz{ [Ci(ug) — Ci(ul)]
— jSitw) — Situ) 1} (5)

where u1=281/(k—1), us=28lk/(k—1) and
k=2Z,/Z:,. This expression appears to be
somewhat simpler than Mr. Matsumaru’s
(8), and his (7), a binomial-expansion ap-
proximation, is not necessary in this case. If a
change of variable, #=28(g7'+x), is made,
his (3) leads directly to the above result—
our (5).

In the treatment of a smusoxdally ta-
pered line, noting that r=(Z; —~Z,) /(Z2-+21)
tends to zero first, and letting I tend to zero
next, Mr, Matsumara showed how his (15)
becomes

= (Za— Z)/(Zs + 20,

the reflection coefficient of two directly con-
nected waveguides. It is felt that this state-
ment, although correct, might mislead one
to think that Matsumaru’s (12) is exact. To
clarify this point, we let / in his (15) tend to
zero first and retain the higher order terms;
(15) then becomes

. Zo— 7 1 Z2~Z1>3
Im R = (222 4 (222
tl—r*% (Z2+Z1) + 3 <Zz+Z1 +
1 Z2
=7
n 7

Tt is seen that as / tends to zero, R tends to 3
In (Z2/Zy) rather than to (Zs—Z1)/(Z2+21).
This limiting case indicates somewhat the
approximate nature of Matsumaru's (12),
from which his (15) is derived. It might be
said that the approximation becomes in-
creasingly good as 7 tends to zero; then

lim R = —In éwé %

-0 2 Zo+Z1

It is also noted that our (5) also becomes
% In (Z3/Z:) asltends to zero. As long as we
use our (2) or its equivalent—Mr. Matsuma-
ru’s equations (4) and (12)—this is true, re-
gardless of the nature of Z(x) or type of
taper. This can be seen directly from our
(2), in which the phase factor tends to unity
as [ tends to zero. Direct integration gives
the proof.

Eq. (2) in this demonstration may be
considered as the first approximation of the
solution to our differential equation (1),
which—together with higher order approxi-
mations—has been discussed elsewhere.* In
general it may be said that if the length of
taper is longer than half of a guide-wave-
length, the second order approximation has
no significant effect.

Ricmarp F. H. Yanc
Andrew Corporation
Chicago, Illinois

4 1. Solymar, “On higher order approximations to
the solution of nonuniform transmission lines,” Proc,
IRE, vol. 45, pp. 1547-1548; November, 1937,
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Author's Comments

I am grateful to Mr. Yang for his re-
marks regarding my paper; his detailed re-
marks strengthen some of the weak points
in it.

First, his analysis of his (4) is known to
me, and I have no further comments to
malke on it. Next, his formula (5) is probably
quite useful in calculating the reflection co-
efficient of linear tapers. In the latter part of
his communication, he has made some re-
marks on the limiting cases of R. Although I
had previously considered these analytical
studies, I did not discuss them fully since
they seemed to be too detailed for my paper.

As I mentioned in my paper, the main
purpose was to present practical design data
rather than detailed analyses. [ would like to
take this opportunity to add some comments
on the experimental data described in my
paper. Figs. 1 and 2, plotted in the K-plane,

_input plane

St
Te)x //—— =0 ~

——~— obp.
7
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Fig, 1—Results of experiments, part 1 (Z2/Z,=2.0).
Data are shown for linear-taper lengths from 4 to

17 cm,
input plane
r-§x =0 rHix
I
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T
/ ’ ~
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Fig. 2—Results of experiments, part 111 (Z,/Zs=2.4).
The normalized sinusoidal- taper length I/A; was
varied from 0.5 to 1.0.

show the reflection coefficients of the data
obtained from experiments, parts [ and [I1,
respectively. The conically looped circular
loci of R of the linear tapers in Fig. 1 show
the typical behavior for the cases of Z:>Z;.
It should be mentioned that the position of
R follows almost the course of one conical
cycle every half-wavelength (4,9 cm). For
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the cases of Z1>Z,, (experiments, part 1I),
the loci of R are like open eccentric spirals
about the center. The loci of sinusoidal
tapers in Fig. 2 appear similar to a reduced
concentric spiral about the center; these are
typical for the cases of Z;>Z;. The position
of R also sweeps almost one cycle every half-
wavelength. The locations in the K-plane
and the forms of these loci are almost identi-
cal for several surge impedance ratios; hence
these two figures depict typical character-
istics for the general cases. Moreover, re-
garding the limiting cases of =0 for linear
tapers, 1 have obtained reasonable data for
the behavior of R.
K. MATSUMARU
Elec. Comm. Lab.
Kichijoji, Tokyo, Japan

IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

B=MH 3)

where the usual approximations of small
signal theory! have been used. One may ob-
serve that this completely general permeabil-
ity matrix still preserves Hermitian char-
acter as long as losses are neglected; and, of
course, it reduces to simple well-known
forms in cases when Hj is along any of the
axes of the microwave carrier.

It may be sometimes desirable to express
the relation between the vectors B and H in
a canonical form. This can be accomplished
by finding the principal axes of the medium
—or, to put it differently—by finding a co-
ordinate system in which there exists a rela-
tion of the form *

(Ba,) = ()aa) (Hal) (4)

where B,' and H,' are the components of the
magnetic induction and magnetic intensity
along the axes of the new coordinate system,
and (Aqa) is a diagonal matrix composed of
the eigenvalues of the permeability matrix
of (2). The procedure of finding the com-
ponents of the matrix (Aga) is usually re-
ferred to as an eigenvalue problem.? In our
case it amounts to finding an unitary matrix
P such that

January

tensity from the original to the new coordi-
nate system are

B'=PB
H' = PH. 6)
To find the matrix P we solve the eigenvalue
equation
M —-INU=0 )
where U is a matrix composed of three row
vectors from which the matrix P can be con-
structed by means of an orthonormalization

process.? Eq. (7) has a unique solution only
if the determinant

|~ 1\ =0, 8)
which yields the results
Anz = ptx
A3 = po. %)

The eigenvalues of (9) are exactly the same
as they would be if the applied magneto-
static field were along any one of the coordi-
nate axes of Fig. 1. This fact may be some-
what surprising.

The amount of algebra involved in find-
ing the matrix P corresponding to the per-
meability matrix of (2) is prohibitive. We
shall try a simpler but still general enough
case in which the applied magnetostatic

PUP? = (Aaar) field is in the x~y plane, ie., 8==/2 in
= Fig. 1. In such a case the permeability ma-
Pl= P (5) trix becomes
f Mo —
. . # + (uo + p) cos® — sin 2¢ —Jx sin ¢
The Permeability Matrix for a Fer- oo — 2
rite Medium Magnetized at an Ar- M=} —5—sin2  (u+ (o—p)sin®¢ jccoso|. (10)
bitrary Direction and Its Eigen- ji sin —jxcos & u
values*
In analysis of propagation through mag- ¥ 4
netized ferrites it is usually assumed that the “
applied magnetostatic field is along one of
the axes of the microwave carrier. It may be -
of interest to analyze the more general case; He
one in which the applied magnetostatic field
is at an angle arbitrary to the axes of the oy I
microwave carrier. i
If the geometry of Fig. 1, where H, :
stands for the applied magnetostatic field ]
and the carrier axes are x, ¥ and 2, is as- ] Y
sumed, then, using the equation for the mo- i - T
tion of the magnetizationt H
|
aM b
—=vyMXH ¢Y)
ot _
the following relation between the vector B X
and H results: Fig. 1.
B, 4 (uo—p) sin? 6 cos? ¢ "12__”‘_ sin? @ sin 2¢-jx cos 8 Bk sin 26 cos ¢ ~4xsin @sin¢g | | H, ]
|
Mo—H .o, . . P s o Ho—f . ..
B,| = —5—sin 0 sin 2¢—jx cos 0 ut(uo—p) sin® 6 sin? ¢ sin 20 sin ¢-+-jksinfcos ¢ | | Hy | (2)
B, i sin 26 cos ¢ 7« sin 6 sin ¢ . sin 26 sin ¢ —jx sin 6 cos ¢ po— (uo—p) sin® @ H,

or, in short notation,

* Received by the PGMTT, September 12, 1958.
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The transformation of the components of the
magnetic induction and the magnetic in-
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The corresponding unitary matrix P can be
found to be

# H. Goldstein, ibid., p. 328.



