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for curve 1?. A comparison of the data of

Figs. 3 and 4 reveals the improvement in

average power handling capacity obtained

by using a high Curie temperature tip of

ferrite positioned on the load end. The trend

of decreasing isolation loss atthe low end of

the band as the effective power is raised is

markedly reduced in Fig. 4, where, for the

composite ferrite isolator, isolation loss at
2.9 kmc is greater than 15 db for an effect ive

a~,erage input power of 3200 watts. Without

the high Curie temperature ferrite the isola-

tor of Fig. 3 displays a reverse loss of <13 db
at 2.9 kmc for an effective average input of
only 1500 watts.

E. N. SKOMAL
Sylvania Microwave Phys. Lab.

Mountain View, Calif.

Reflection Coefficient of E-Plane

Tapered Waveguides*

In a paper by Matsumaru/ formulas of
the input reflection coefficients of the line-
arly and sinusoidally E-plane tapered wave-

guides are given. Excellent agreements be-
tween the theoretical and experimental re-

sults have been found in both cases. In this

note we wish to add some analytical re-

marks.

The analysis given in the above paper is

different from the rigorous one given by

Walker and Wax. z The latter led to a non-
linear differential equation

where R is the reflection coefficient, .2(x) is
the surge impedance of the tapered line, and
~ = ~ +~~ is the wave propagation constant.

If the tapered line is loss-free, then we have
~ =~~, On the assumption that the phase

constant, @ is independent of x, and that

2/2<<1, Bolinder3 obtained an approximate
expression of the input reflection coefficient

for a finite tapered line of length J, termin-
ated by Z(0) =21 and Z(l) =22 at each end.

It may be shown that Mr. Matsurnaru’s

equations (4) and (12) are equivalent to (2)
in this communication. On substitution of

the surge impedance of a sinusoidal taper

ilito our (2), we obtain his (12). Substituting
the surge impedance of a linear taper

z(x) = z, + (Z2 – zl)x/J (4)
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iuto our (2), and letting x = y+l/2, we ob-
tain his (4), with its independent variable x
being replaced by y. Therefore, it appears

that Bolinder’s assumption of Rz<<l should

also apply to Mr. Matsumaru’s analytical

results. This is not, however, stated explicitly

in his paper.

For a linearly tapered line defined by (4),

(2) may be integrated exactly in terms of Ci

and .%, the cosine and sine integrals. The in-

put reflection coefficient is

R = +4w{ [Ci(m) – Ci(z.L,) ]

– j[si(ts,) – Si(ZJl) ] ] (5)

where ul=2f31/(k -1), uz=2@k/(k -1) and
k = Z~/Z,. This expression appears to be
somewhat simpler than Mr. Matsumaru’s

(8), and his (7), a binomial-expansion ap-
proximation, is not necessary in this case. If a

change of variable, u = 2ff (g–l +x), is made,

his (5) leads directly to the above result—

our (5).
In the treatment of a sinusoidally ta-

pered line, noting that r= (Z1 –ZJ/(Z,+ZJ
tends to zero first, and letting t tend to zero
next, Mr. Matsumara showed how his (15)

becomes

R = (Z, – Z,)/(Zz + Z,),

the reflection coefficient of two directly con-
nected waveguides. It is felt that this state-
ment, although correct, might mislead one

to think that Matsumaru’s (12) is exact. To

clarify this point, we let 1 in his (15) tend to
zero first and retain the higher order terms;

(15) then becomes

hmoR =
(%M%%Y+ “ “ “

=~ln~.

It is seen that as 1 tends to zero, R tends to ~
in (22/2,) rather than to (Z, –ZJ/(Z~+Z,).
This limiting case indicates somewhat the

aPPrO~imate nature of Matsumaru’s (12),
from which his (15) is derived. It might be

said that the approximation becomes in-

creasingly good as r tends to zero; then

It is also noted that our (5) also becomes

~ in (ZZ/ZJ as J tends to zero. As long as we
use our (2) or its equivalent—Mr. Matsuma-
ru’s equations (4) and (12)—this is true, re-
gardless of the nature of Z(x) or type of

taper. This can be seen directly from our
(2), in which the phase factor tends to unity

as 1 tends to zero. Direct integration gives

the proof.
Eq. (2) in this demonstration may be

considered as the first approximation of the

solution to our differential equation (1),

which—together with higher order approxi-

mations—has been discussed elsewhere.d [n
general it may be said that if the length of

taper is longer than half of a guide-wave-
length, the second order approximation has
no significant effect,

RICHARD F. H. YANG

Andrew Corporation
Chicago, Illinois
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.4dhor’s Comment5

I am grateful to Mr. Yang for his re-

marks regarding my paper; h’is detailed re-
marks strengthen some of the weak points

in it.
First, his anal ysis of his (4) is known to

me, and I have no further comments to

make on it. Next, his formula (5) is probably

quite useful in calculating the reflection co-

efficient of linear tapers. In the latter part of

his communication, he has made some re-

marks on the limiting cases of R. Although I
had previously considered these analytical

studies, I did not discuss them fully since
they seemed to be too detailed for my paper.

As I mentioned in my paper, the main

purpose was to present practical design data
rather than detailed analyses. I would like to

take this opportunity to add some comments

orL the experimental data described in my
paper. Figs. 1 and 2, plotted in the K-pIane,

. $>put..mn.
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Fig. i—Results of experiments, part I (ZZ/ZL =2.o).

Data are shown for linear-taper lengths from 4 to
17 cm.

Fig. 2—Results of experiments, part III (ZI/Zj = 2.4).
The normalized sinusoidal-taper length Z/Xg was
varied from 0.5 to 1.0.

show the reflection coefficients of the data

obtained from experiments, parts I and II 1,
respectively. The conically looped circular
loci of R of the linear tapers in Fig. 1 show

the typical behavior for the cases of Z2 >21.
It should be mentioned that the position of

R follows almost the course of one conical

rycle every half-wavelength (4,9 cm). For
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the cases of Z1 >Z,, (experiments, part II),

the loci of R are like open eccentric spirals

about the center. The loci of sinusoidal

tapers in Fig. 2 appear similar to a reduced

concentric spiral about the center; these are

typical for the cases of Z, >Z*. The position

of R also sweeps almost one cycle every half-
wavelength. The locations in the K-plane
and the forms of these loci are almost identi-

cal for several surge impedance ratios; hence
these two figures depict typical character-
istics for the general cases. Moreover, re-

garding the limiting cases of t= O for linear

tapers, I have obtained reasonable data for

the behavior of R.
K. MATSUMARU

Elec. Comm. Lab.

Kichijoji, Tokyo, Japan

B=MH (3)

where the usual approximations of small

signal theoryl have been used. One may ob-

serve that this completely general permeabil-

ity matrix still preserves Hermitian char-

acter as long as losses are neglected; and, of

course, it reduces to simple well-known

forms in cases when Ho is along any of the
axes of the microwave carrier.

It maybe sometimes desirable to express

the relation between the vectors B and H in

a canonical form, This can be accomplished

by finding the principal axes of the medium

—or, to put it differently-by finding a co-
ordinate system in which there exists a rela-

tion of the form ,

(Ba’) = (Aaa)(i?a’) (4)

where Ba’ and Ha’ are the components of the
magnrjic induction and magnetic intensity
along the axes of the new coordinate system,

and (xJ is a diagonal matrix composed of
the eigenvalues of the permeability matrix

of (2). The procedure of finding the com-

ponents of the matrix (&) is usually re-
ferred to as an eigenvalue problem.~ In our

case it amounts to finding an unitary matrix

P such that

PMP”l = (Aaa)

p-1 = p (5)

The Permeability Matrix for a Fer-

rite Medium Magnetized at an Ar-

bitrary Direction and Its Eigen-

values*

In analysis of propagation through mag-

netized ferrites it is usually assumed that the

applied magnetostatic field is along one of
the axes of the microwave carrier. It may be
of interest to analyze the more general case;
one in which the applied magnetostatic field

is at an angle arbitrary to the axes of the
microwave carrier.

If the geometry of Fig. 1, where HO
stands for the applied magnetostatic field

and the carrier axes are x, y and z, is as-

sumed, then, using the equation for the mo-

tion of the magnetization

aM
—=-yMXH
at

(1)

the following relation between the vector B
and H results:
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tensity from the original to the new coordi-
nate system are

@ = PB

H’ = PH. (6)

To find the matrix P we solve the eigenvalue

equation

(M– IA)U=O (7)

where U is a matrix composed of three row
vectors from which the matrix P can be con-

structed by means of an orthonormalization
process.j Eq. (7) has a unique solution only

if the determinant

IM-IA( =0, (8)

which yields the results

hl,z = N*K

A3 = po. (9)

The eigenvalues of (9) are exactly the same

as they would be if the applied magneto-
static field were along any one of the coordi-

nate axes of Fig. 1. This fact may be some-
what surprising.

The amount of algebra involved in find-

ing the matrix P corresponding to the per-
meability matrix of (2) is prohibitive. We

shall try a simpler but still general enough

case in which the applied magnetostatic
field is in the x –y plane, i.e., f?=T/2 in

Fig. 1. In such a case the permeability y ma-

trix becomes

(10)

z
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or, in short notation, The transformation of the components of the The corresponding unitary matrix P can be
magnetic induction and the magnetic in- found to be
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